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We consider the nearest neighbor Ising model on the 2D square lattice and 
divide the lattice into 2 by 2 blocks. Each block is assigned one spin value 
(1 or -1)  and these block spin values are kept fixed. We then impose the 
majority rule and look at the effect on the phase transition that was present in 
the original unconstrained spin system. We find that lbr the checkerboard 
block-spin configuration, Monte Carlo simulations show that fl,. is close to 1, 
which, compared to the original nearest neighbor Ising fl, = 0.44 .... shows that 
the critical temperature has been reduced by more than one half. For none of 
the other I I block-spin configurations that we have considered is there any 
indication of a phase transition in the constrained system of original spins. 

KEY WORDS: Lattice spin system; majority rule; Monte Carlo simulation; 
renormalization group transformations. 

1. I N T R O D U C T I O N  

In the renormal iza t ion  group theory, there is a fundamenta l  assumpt ion  
that  the in t roduc t ion  of the block spins into a critical system should make 
the correlat ion length finite. In  other words, if a choice of the block-spin 
configurat ion is made and  these block spins are fixed, then the const ra ined 
system should no t  have a phase t ransi t ion at the same tempera ture  as the 
original  system. Rather,  the critical poin t  should be shifted to a lower tem- 
perature,  i.e., larger fl (inverse temperature) .  Kennedy  proved that in 2D 
for three cl]oices of the block-spin configurat ion,  one of them being the 
checkerboard,  the major i ty  rule imposed on the original spins does cause 
the critical temperature  to shift to the leftJ sl Benfatto e t a l .  ~ ran  Monte  
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block-spin is taken to be the sum of spins in the block. They considered the 
block-spin configuration in which all the block spins are zero. They found 
that the introduction of this block spin configuration does indeed lower the 
critical temperature, but only by about 10%. We will show by numerical 
computation that the majority rule gives rise to a substantially larger shift 
in the critical temperature than found in ref. 1. 

Van Enter e t  al. ~3~ have proven that, at low enough temperature, there 
is a phase transition for 7 by 7 blocks with the doubly alternating block- 
spin configuration pictured in Fig. 4. In their argument, they proved that 
the constrained system has two Gibbs states. We find that for 2 by 2 
blocks, the number of ground states grows exponentially with the lattice 
size. For a recent review of these pathologies that can occur at low tem- 
perature, see ref. 4 and references therein. Cirillo and Olivieri c2~ recently 
studied similar constrained models with a slightly different type of majority 
rule, where for each of the two values of a block spin (1 and - 1 ), there 
are eight compatible blocks, whereas in our case there are 11 possible 
blocks compatible with each block spin value. 

We consider the nearest neighbor Ising model on a lattice, which is 
defined by 

/ - / 1 r  = - 5-'. o,a  
~,?j) 

where (0") denotes nearest neighbor sites. Each spin ai takes on one of two 
values in { - 1 ,  1}. We define the following probability measure on the 
space of spin configurations 

e - [ t iRo l  
n ( a )  = - -  

Z 

where Z is the constant that makes g a probability measure, and fl is the 
inverse temperature. This is the probability measure for the unconstrained 
Ising model. We will simulate this measure to obtain the well-known fl,. for 
this model. We divide the lattice into 2 by 2 blocks and assign a spin value 
to each block, which we call the block-spin value. The spins in the original 
system are denoted by a. The "block" spins are denoted by a'. Each block 
can take on one of 16 configurations: 6 are tied blocks, 5 have a majority 
of + ,  and 5 have a majority of - .  We consider real space renormalization 
group transformations for such systems, which are formally defined by 

e - " ' ~ ' ~  = y "  T ( a .  a ' )  e / . , , .b  
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where T(a, a') is a probability kernel, i.e., ~ , , T ( a , a ' ) =  1, for every con- 
figuration a. For  each choice of the block-spin configuration a', let no, be 
the measure on spin configurations a which, for the finite-size lattices, is 
given by taking the probability of a to be proportional to T(a, a') "-H~<. 
We take the kernel T(a, a') to be that of the majority rule transformation. 
Introductory discussions of these renormalization group transformations 
may be found in refs. 3 and 6. Numerical results show that there is a shift 
in the fl, for a particular choice of a configuration of the block spins, 
namely the checkerboard configuration. 

2. N U M E R I C A L  C O M P U T A T I O N S  

For each block-spin configuration a' we use Monte Carlo methods to 
simulate a Markov chain whose equilibrium distribution is 

- E(,r) 
e ~ , ( a )  = - -  

Z a, 

where 

E(a)  = f i l l ( a )  + ln(2) N(o)  

where N(a)  denotes the number of tied block spins in the original spin con- 
figuration a and 

Za, = ~. e - E~") 
~ :  tr '  

where a: a' means that each block in a is either tied or a majority of its 
spins agree with the corresponding block-spin in a'; we will refer to this 
situation by "'a is compatible with a'." In situations where a is not com- 
patible with a', the probability measure n~, takes the value 0. At each block 
site in the "renormalized" lattice, which we denote by A', we compute the 
change in energy d E  that would be caused by "flipping" the block, i.e., 
assigning to it one of the 11 block configurations that agree with the block 
spin. If d E  is negative, we accept the proposed "flip." If d E  is positive, we 
accept the proposed configuration with probability e -' 'u. After a "sweep" 
of the lattice, we update the chosen observable, in this case the specific 
heat: 

C, :/321AI -t ( ( H  2) - - ( H )  2) 

where IAI is the number of block spins in the original lattice. Throughout  
each Monte Carlo simulation, the block-spin configuration is unchanged, 
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only the blocks themselves are subject to change. Since these simulations 
are taking place on a finite lattice, we define the boundary terms peri- 
odically. 

We start the simulation with a random configuration of the blocks 
which is in agreement with the block spin configuration, and we run 40,000 
lattice sweeps before we start updating the observable, to account for the 
initial bias occurring from starting probably far from equilibrium. All the 
results shown here were obtained with 400,000 sweeps of the lattice. To get 
an estimate of the specific heat for a particular volume, we compute its 
average over 20,000 sweeps of the lattice A', then we compute the average 
of the resulting 20 values. This procedure allows us to estimate the 
standard deviation of the estimates. As an example, for the checkerboard 
constrained system, for L = 3 2 ,  the estimated variance of the estimated 
specific heat starts at 0.116924 for fl = 0.92, then increases to 5.729983 for 
fl-- 1.0, which is near the point of criticality and then decreases to 0.076778 
for/3 = 1.06. 

We considered 12 periodic block spin configurations that can be 
thought of as natural. The patterns used for these configurations are pic- 
tured in Fig. 4. The configuration for the whole finite lattice is obtained by 
repeating the patterns as many times as necessary. The volumes are always 
taken to be of the type 4k by 41 and in all our applications k = l. 

First, note that the lengths indicated on the figures are meant in terms 
of block spins, i.e., an 8 by 8 lattice contains 64 block spins and 256 
original spins. The simulation pictured in Fig. 1 represents the graph of the 
estimated specific heat for the regular unconstrained nearest neighbor Ising 
model. The peak in the specific heat, which is located near /3,. = 0.44 .... 
shows a strong volume dependence. This leads one to conclude that the 
infinite volume limit of the specific heat will have a discontinuity at /3,. 
A similar observation can be made regarding the checkerboard configura- 
tion (Fig. 2), where the critical /3 is near 1. However, in Fig. 3, which 
represents the specific heat for the doubly alternating configuration con- 
sidered in ref. 3, something very different is happening in the sense that 
here the specific heat curve is almost independent of the volume size. Thus, 
we conclude the absence of a phase transition for this particular block-spin 
configuration. A similar behavior was found for some of the other configu- 
rations, for which the result of the simulations is not shown. Other con- 
figurations show a peak which is clearly not of the same nature as for the 
checkerboard configuration. 

The striking fact about the shift in/3,, that we have encountered is that 
the smallest one, found for the checkerboard configuration, is much bigger 
than the type of shift found in ref. 1. The nearest neighbor Ising model 
without any constraints has two ground states which give rise to two Gibbs 
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Fig. 1. Uncons t r a ined  nn Ising model ,  L = 8, 16, 32, 440 K sweeps. 
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Doubly alternating configuration from ref. 3, L = 8, 16, 32, 440 K sweeps. 
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states at low temperature, and hence a phase transition. For the checker- 
board-configuration constrained model, there are four ground states that 
can be obtained from each other by a natural symmetry. A phase transition 
was found for this model. However, for the doubly alternating configura- 
tion, the number of ground states grows exponentially with the lattice size. 
In this case, no phase transition was found. None of the periodic con- 
straints we have considered has phase transition at a temperature which is 
higher than half the critical temperature of the unconstrained model. This 
supports the suggestion of ref. 5 that the majority rule transformation is 
well defined in a region including the critical temperature. 

A C K N O W L E D G M E N T S  

I am very grateful to my Ph.D. thesis advisor, Prof. Tom Kennedy, for 
his kind and generous help, without which this work would never have 
been completed. I also would like to express my gratitude to the U.S. 
Agency for International Development and the African American Institute 
for sponsoring most of my studies in this country. This work was 
supported in part by NSF grant DMS-9303051. 

REFERENCES 

1. G. Benfatto, E. Marinari, and E. Olivieri, Some numerical results on the block spin trans- 
formation for the 2D lsing model at the critical point, J. Slat. Ph.vs. 78:731 (1995). 

2. Emilio N. M. Cirillo, and Enzo Olivieri, Renormalization group at criticality and complete 
analycity of constrained models: A numerical study, J. S/at. Ph),s., this issue. 

3. A. C. D. van Enter, R. Fernfindez, and A. D. Sokal, Renormalization transibrmations in the 
vicinity of first-order phase transitions: What can and cannot go wrong, Phys. Rev. Le/t. 
66:3253 (1991 J; Regularity properties and pathologies of position-space renormalization 
group transformations, Nucl. Phys. B (Proc. Suppl.) 20:48 (1991): Regularity properties and 
pathologies of position-space renornlalization-group translbrmations: Scope and limita- 
tions of Gibbsian theory, J, Star. Phys. 72:879 (1993). 

4. A. C. D. van Enter, On the possible failure of the Gibbs property for measures on lattice 
systems, preprint. 

5. T. Kennedy, Some rigorous results on maljority rule renormalization group transformations 
near the critical point, J. Star. Phys. 72:15 (1993). 

6. Th. Niemeijer and M. J. van Leeuwen, Renormalization theory for lsing-like spin systems, 
in Phase Transitions and Critical Phenomena, Vol. 6, C. Domb, and M. S. Green, eds. 
(Academic 13ress, New York, 1976). 


